
PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3
Relaxation length of a polymer chain in a quenched disordered medium
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~Received 22 March 1999!

Using Monte Carlo simulations, we study the relaxation and short-time diffusion of polymer chains in
two-dimensional periodic arrays of obstacles with random point defects. The displacement of the center of
mass follows the anomalous scaling lawr c.m.(t)

254D* tb, with b,1, for timest,tSS, wheretSS is the time
required to attain the steady state. The relaxation of the autocorrelation function of the chain’s end-to-end
vector, on the other hand, is well described by the stretched exponential formC(t)5exp@2(t/t* )a#, where 0
,a<1 andt* !tSS. However, our results also obey the functional formC(r c.m.)5exp(2@rc.m./l#2), imply-
ing the couplinga5b even though these exponents vary widely from system to system. We thus propose that
it is l, and not the traditional length (Dt* )1/2, that is the relevant relaxation polymer length scale in disordered
systems.@S1063-651X~99!10909-7#

PACS number~s!: 36.20.Ey, 83.10.Nn, 87.15.He
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I. INTRODUCTION

The conformational and dynamical properties of polym
in ~quenched! disordered media have attracted a lot of atte
tion recently@1#. In particular, the possible collapse of th
radius-of-gyrationRg and the strong molecular size depe
dence of the diffusion coefficientD have been studied usin
a variety of analytical and numerical tools@1#. Generally, it
has been concluded that whileRg is slightly reduced by dis-
order, the scaling lawRg;(M21)n, wheren53/(21d) is
Flory’s exponent for a linear chain ofM monomers ind
dimensions, remains valid@1,2#. The scaling ofD with size
M is more system-dependent@1–3# because the disorder gen
erates entropic barriers which hinder long-range diffusion
finite-size polymer chains with the resulting hoppinglike pr
cess being then governed by the connectivity of the voids
is usually thought that the reptation model applies in ca
where Rg is much larger than the characteristic leng
scale~s! of the disordered medium@4#. The disorder is then a
mean topological field which effectively rescales the po
mer’s mobility in its reptation tube~note that this has yet to
be observed in computer simulations!.

To our knowledge, polymer relaxation in disordered m
dia has never been studied in detail. Scaling analysis i
cates that the conformational relaxation times scale likt
;Mb, with b52n11 andb53, in the Rouse and reptatio
limits, respectively@1#. In both cases, the simple scaling r
lationship Rg;(Dt)1/2 is satisfied since the polymer mo
ecule diffuses over distances comparable toRg ~the only rel-
evant length scale! during relaxation. In a disordere
medium, however, one can define several topological len
scales such as the correlation length, the mean pore size
mean distance between voids of sizea>Rg , etc. Conse-
quently, conformational relaxation and steady-state diffus
may no longer be directly related and the ‘‘relaxati
length’’ l0;(Dt)1/2 may become strongly system
dependent or even irrelevant@1,3#. On the other hand, diffu-
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sion is often anomalous for short times in disordered me
while relaxation may be characterized by stretched expon
tials. This paper proposes a way to link these different e
ments when studying entropic trapping systems.

We thus report a computer-simulation study of polym
relaxation in a two-dimensional (d52) system. We find that
relaxation is affected by the degree of disorder, leading
stretched exponential decay curves. The stretching expo
is shown to correspond directly with the anomalous~sub!dif-
fusion transient regime, which in turn defines a new rela
ation length scalel.

II. MONTE CARLO METHOD

Details of the model can be found in Refs.@2#, @3#, and
@5#. Briefly, the simulations use the four-site bond-fluctuati
algorithm@6# on a square (d52) lattice with periodic bound-
ary conditions. The immobile obstacles are identical to
monomers and satisfy the same excluded volume rules
polymer molecule is comprised ofM>2 monomers con-
nected byM21 bonds whose lengths are restricted to t
rangel P@2,131/2# ~in units of the lattice spacing!; this con-
straint ensures the automatic compliance of the self-exclu
volume effects. One Monte Carlo step consists of selectin
random monomer and attempting to move it one lattice sp
ing in a random direction (6x or 6y). A move is rejected if
the newly chosen site is occupied, or if it results in violati
the bond-length restrictions. In this model disordered syst
the obstacles constitute a periodic~square! sublattice with
lattice spacing parameterp54 @2,3,5#. Imperfect lattices are
created by randomly selecting and removing a fraction
2c) of the obstacles, thus creating pointlike defects in
obstacle sublattice. This model converges naturally towa
Rouse and reptation dynamics in the appropriate limitsc
50 and 1, respectively. For intermediate concentrations,
chain spends long periods of time in the larger voids, and
dynamics is strongly affected by this ‘‘entropic trapping
@3#. The lattice size was at least 126031260; with such large
system sizes, averaging over various realizations of the
order was not necessary except when the concentration
in the narrow range 0.99,c,1.0.
ic
3170 © 1999 The American Physical Society
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III. RESULTS

The normalized autocorrelation functionC(t) of the
chain’s end-to-end vectorh(t) is defined as~where^ & signi-
fies an ensemble average andt is the time!

C~ t !5
^h~ t !•h~0!&

^h2~0!&
. ~1!

In Fig. 1, we plot theC(t) decay curves for anM525 chain
in the Rouse (c50) and reptation (c51) limits. In both
cases, the curves become linear after a short time pe
(t/t'0.4) during which excluded volume effects and sh
length scale processes play a role~in fact, the two scaled
curves are indistinguishable!. For intermediate concentra
tions, however, the decays are clearly curved for all times
each case, the time axis was rescaled by the~integral! relax-
ation timet, defined as

t[E
0

`

C~ t ! dt. ~2!

Figure 2 shows howt(c,M ) varies as a function of size
M for different concentrationsc. Our c50 results are con-
sistent with the scaling lawt(c50,M );M5/2, in agreement
with Downey @7#. In the casec51, however, the conver
gence towards the predicted reptation scaling lawt;M3 is
rather slow over this size range, and at;M3.36 line provides
an acceptable fit~not shown!. This is not surprising since
strong finite-size corrections are expected for finite sizesM
due to tube length fluctuations, which scale likeM 21/2 @8#. In
fact, the formt(M )571M3@1 – 1.14/M1/2#2 provides a better
fit ~see Fig. 2; the last term is the correction factor for fini
size effects@8#!. Because of these strongc51 finite-size
effects, it is more appropriate to refer to our molecules
oligomers. For intermediate concentrations, empirical sca
lawst;Mg are also found. We note thatg increases quickly
from 2.55 to 3.28 betweenc50 andc50.2, and attains a
maximum value of 4.14 atc50.9. Surprisingly, the longes

FIG. 1. Correlation functionC(t) vs scaled timet/t for various
concentrationsc. Inset: same data forc50.9 and 1 with a normal
time axis. In both figures, the solid lines are the best fits obtai
using the form given by Eq.~3!, with a51 for c51 anda50.66
for c50.90.
od
t

n

-

s
g

relaxation times~as measured by the integral timest! are not
found at c51.0 here~for M.20). Clearly, disorder has a
major impact on oligomer chain relaxation.

As can be seen in the inset of Fig. 1, thec51 and c
50.9 decay curves are almost identical fort,43105, but
diverge for later times. Therefore, polymers take more ti
to fully relax in the presence of asmall degree of disorder,
despite the lower density of obstacles. The decay curves
form well to the stretched-exponential or Kohlrausc
Williams-Watts~KWW! relation @9,10#

C~ t !5expF2S t

t* D aG , ~3!

where 0,a<1 ~see, e.g.,c50.9 in Fig. 1!. Note that Eqs.
~2! and ~3! are simply related throught5@G(1/a)/a#3t* ,
whereG is the gamma function. Of course, it is because
stretched exponenta is much lower in the range of concen
trations where strong entropic trapping occurs~approxi-
mately 0.6,c,0.95 for our system@2–5#! that relaxation is
anomalously slow in these cases.

In previous studies on disordered systems@1,5,11#, it was
remarked that the displacementr c.m. of the center of mass
~c.m.! often follows anomalous subdiffusive scalingr c.m.

2

54D* tb ~with b,1), whereD* is the anomalous diffusion
coefficient. Figure 3 shows that it is the case here for sh
times. Steady state~i.e., r c.m.

2 54Dt) is achieved for longer
times. The transition from anomalous to steady-state di
sion defines the steady-state timetSS5(D* /D)1/(12b). For
c50 and 1, however, diffusion is normal over the who
range of times andtSS is ill-defined. The inset of Fig. 2
shows that the anomalous exponentb corresponds rathe
well with the stretched exponenta when plotted versus the
concentrationc. In fact, the two are essentially indistinguish
able given the scatter in our data.

Therefore, conformational relaxation, as described
C(t), and center-of-mass anomalous diffusion appear to
related. This coupling implies a new expression for the c
relation function,

d

FIG. 2. Log-log plot of the integral relaxation timet vs molecu-
lar sizeM for various concentrationsc. The slopes of the straigh
line fits are shown. The fit forc51.0 is the theory-motivated func
tion t(M )571M3@1 – 1.14/M1/2#2. Inset: exponentsa and b vs
concentrationc for M525.
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C„r c.m.~ t !…5expS 2F r c.m.~ t !

l~c,M !G
2D , ~4!

wherel(c,M ) is then the natural ‘‘relaxation length scale.
In the Rouse and reptation limits (c50 and 1, respectively!
one has simplya5b51, r c.m.;t1/2, and l;Rg;M3/4, as
discussed previously. For intermediate concentrations, Fi
shows that plotting ln(C) versus (r c.m.)

2 indeed yields
straight lines~except, again, for very short distances a
times!, indicating thata5b during relaxation. This is a
novel way to investigate polymer relaxation in disorder s
tems.

Becauset!tSS, conformational relaxation occurs we
within the transient anomalous diffusion regime in the pr
ence of disorder; consequently, the simple scaling argum
t;Rg

2/D is not valid and the relaxation length scale is n
l05(4Dt)1/2. Instead, our finding suggests the existence

FIG. 3. Log-log plot of the mean-square displacement of
center of mass,r c.m.

2 , vs time t, for an M525 chain and various
concentrationsc. The steady-state timetSS is defined at the transi
tion between the short-time anomalous diffusion regime and
steady-state regime, as shown.

FIG. 4. Plot of lnC vs r c.m.
2 for M525 and different concentra

tion c. Straight line fits are shown~the latter provides a good fi
except when very close tor c.m.50). The slope gives21/l2.
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a new length scalel>l0 defined asl254D* (t* )b, with b
andD* characterizing anomalous diffusion andt* the relax-
ation process, respectively. Figure 5 shows thatl scales ap-
proximately likeM3/4 for all concentrations~there is no clear
deviation from this slope in our data, although we cann
rule out such deviations given the noise in the data!. In other
words, our data suggest that we have a relationshipl
5 f (c)3Rg , where f (c).1 is a numerical factor of orde
unity that decreases slowly withc ~inset of Fig. 5!.

IV. CONCLUSION

Our Monte Carlo simulations previously revealed that d
order dramatically affects polymer dynamics@2,3,5#. For ex-
ample, we reported that the diffusion coefficientD(M ) and
the radius-of-gyrationRg both attain minimum values forc
'0.90 in our model system. In this short paper, we fou
that polymer relaxation is also strongly affected. For
stance, the relaxation of the end-to-end vector follows
stretched exponential, while the diffusion of the center
mass is anomalous for a period of time which greatly e
ceeds the relaxation time. Again, it is in the presence o
small amount of disorder~i.e., for c'0.90) that we find the
slowest dynamics, e.g., the longest relaxation times. This
good example of the impact of entropic traps on polym
properties. Large random voids can act as deep pote
wells which trap the polymer chains and modify their d
namics.

Stretched exponentials have been reported in a wide c
of materials, including polymeric substances and glas
@12#, and have often been explained using the concep
dynamic heterogeneity@13#. Here, they result from the cou
pling between the relaxation process and the disorder-rel
anomalous diffusion, defining a new relaxation length sc
l5@2dD* tb#1/2. We suggest thatl is the fundamental pa
rameter pertaining to polymer relaxation in quenched dis

e

e

FIG. 5. Relaxation length scalel vs molecular sizeM for dif-
ferent concentrationsc. Then5

3
4 slope corresponds to Flory’s sca

ing law for the radius of gyration. Inset: ratiol/Rg vs concentra-
tion c for M525.



w

u
o

e

i

in

e-
Re-

PRE 60 3173RELAXATION LENGTH OF A POLYMER CHAIN IN A . . .
dered systems. For our model two-dimensional system,
find the approximate relationshipl;Rg , but this somewhat
surprising result may in fact be system-dependent. It wo
be most interesting to examine, for example, how the lack
excluded volume effects~or the weaker excluded volum
effects present in three-dimensional systems! would affect
this apparent scaling law. We hope that this concept w
n
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ll

prove useful to understand polymer entropic trapping
quenched disordered media.
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